

<u>Agrar - Betriebsgemeinschaft</u>

<u>Leine - Solling</u>

Parensen

Agrar-Dienste

Leine-Solling

37176 Parensen (Région de Northeim) Sud de la Basse-Saxe

Sommaire

- 1. Présentation du conférencier et de l'entreprise
- Raisons du focus de la production sur les denrées alimentaires
- 3. Aperçu de l'agriculture moderne d'aujourd'hui et de demain
- 4. Calcul de rentabilité de l'utilisation du dGPS
- 5. Conclusion

Sommaire

- 1. Présentation du conférencier et de l'entreprise
- 2. Raisons du focus de la production sur les denrées alimentaires
- 3. Aperçu de l'agriculture moderne d'aujourd'hui et de demain
- 4. Calcul de rentabilité de l'utilisation du dGPS
- 5. Conclusion

Curriculum vitae (Christoph von Breitenbuch)

né à Göttingen. Enfance dans l'exploitation familiale à Parensen.

1996 Baccalauréat avec option agriculture

1996 – 1998 Apprentissage pour devenir agriculteur en Rhénanie-Westphalie et

en Mecklembourg-Poméranie occidentale

1998 – 2003 Études d'agriculture avec l'option économie à l'école supérieure de sciences

appliquées de Weihenstephan / Bavière conclues par le diplôme d'ingénieur

agronome. Dipl.-Ing. (FH)

Jobs de saisonnier agricole en Allemagne et à l'étranger

Stages: HaGe Kiel, BB Göttingen, PS-Beratung au sein de la chambre d'agriculture

de Basse-Saxe

depuis juillet 2003 Gérant de groupement agricole Leine-Solling GbR et

depuis juillet 2010 Gérant des Agrar-Dienste Leine-Solling GmbH & Co. KG

2004 marié; deux enfants (Jakob 6 ans, Johann 5 ans)

Christoph von

Breitenbuch

Les associés de l'entreprise

Gutsverwaltung Hoppensen Ludolf von Dassel

Gutsverwaltung Dörrigsen Kay van der Wolk Frhr. von Minnigerode

Leine - Solling

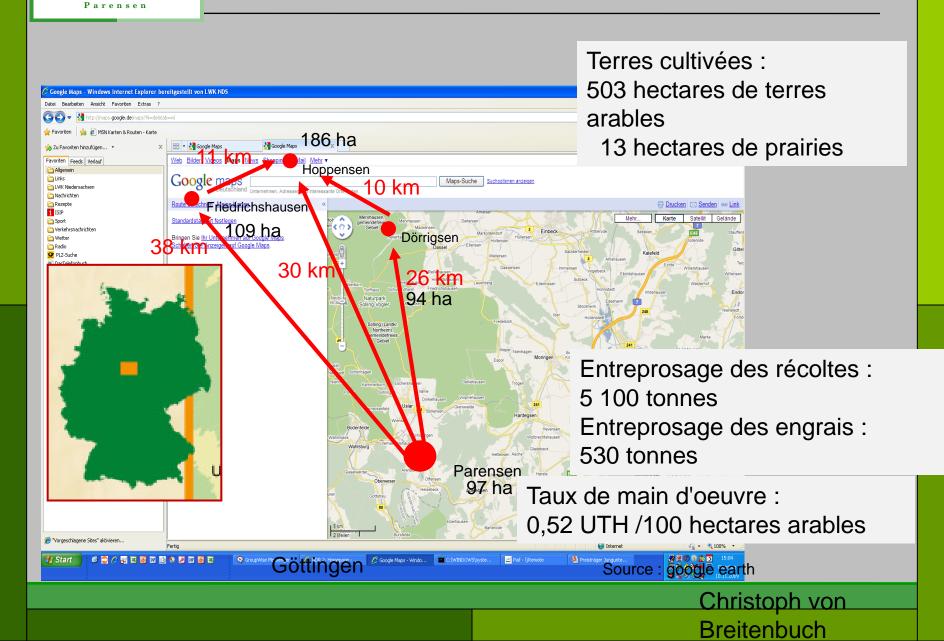
Parensen

Agrar-Dienste

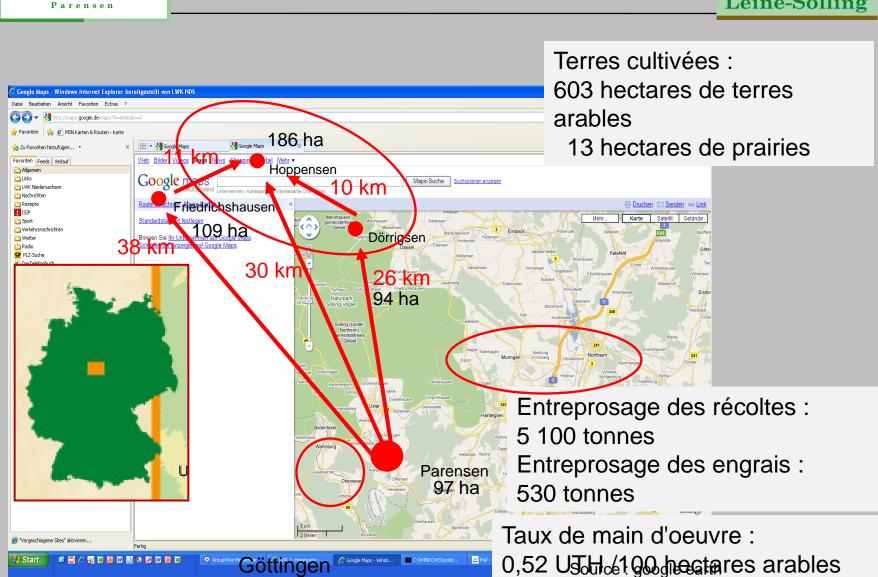
Leine-Solling

Principaux champs d'activités agricoles de l'entreprise

Production de céréales, de betteraves sucrières, de colza et de bois de chauffage entreposage et mise sur le marché des récoltes, achat des intrants agricoles



Agrar - Betriebsgemeinschaft Leine - Solling


La région économique de l'entreprise

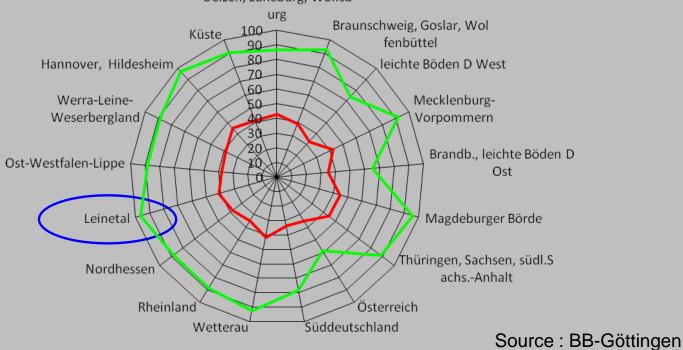
<u>Agrar - Betriebsgemeinschaft</u> <u>Leine - Solling</u>

La région économique de l'entreprise

Agrar-Dienste Leine-Solling

Sommaire

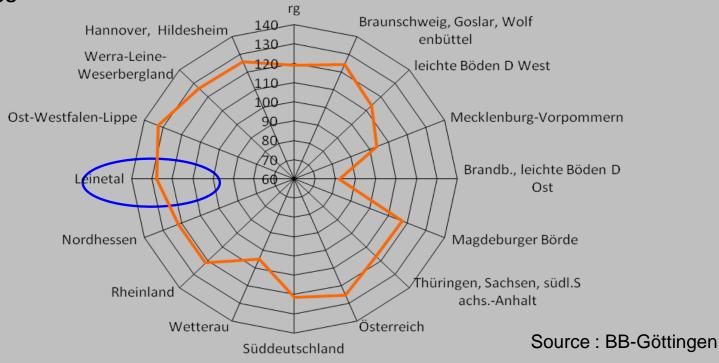
- 1. Présentation du conférencier et de l'entreprise
- 2. Raisons du focus de la production sur les denrées alimentaires
- 3. Aperçu de l'agriculture moderne d'aujourd'hui et de demain
- 4. Calcul de rentabilité de l'utilisation du dGPS
- 5. Conclusion


Production de céréales – Qualité depuis plus de 3 500 ans

Pourquoi la stratégie de l'exploitation se concentre-t-elle sur la production de denrées alimentaires ?

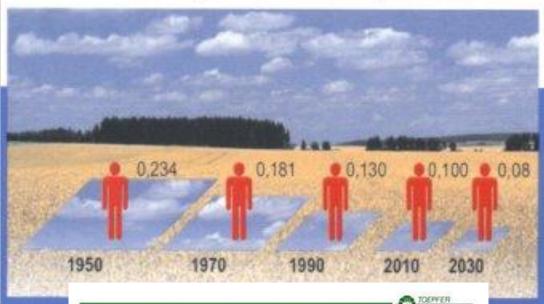
Sites appropriés au sud de la Basse-Saxe pour la production de denrées alimentaires

Uelzen, Lüneburg, Wolfsb

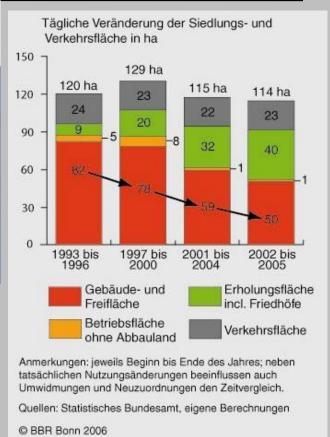


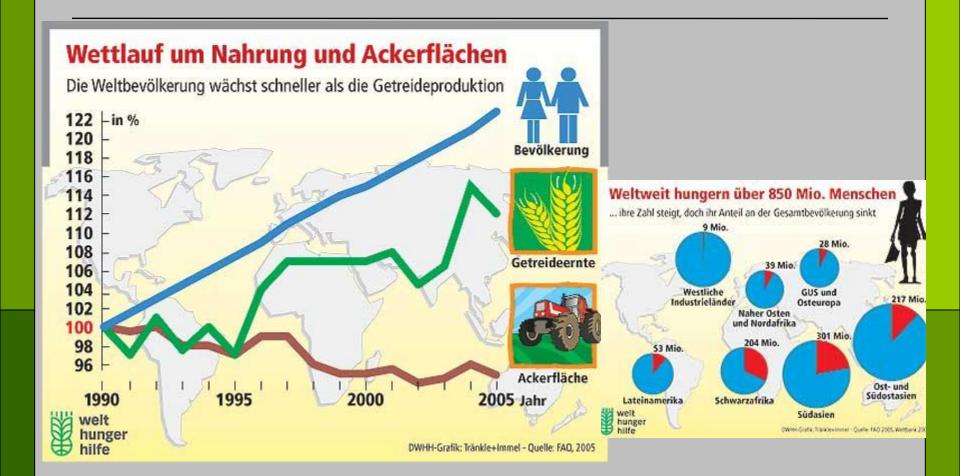
Ertrag Weizen in dt/ha ——Ertrag Raps in dt/ha

Pourquoi la stratégie de l'exploitation se concentre-t-elle sur la production de denrées alimentaires ?

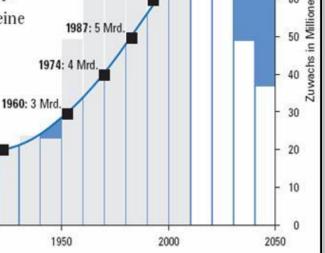

Sites appropriés au sud de la Basse-Saxe pour la production de denrées alimentaires


Uelzen, Lüneburg, Wolfsbu




Ertrag Zucker in dt/ha

Weltweite Getreidefläche in Hektar pro Person



Historische Entwicklung der Weltbevölkerung

Die erste Milliarde erreichte die Weltbevölkerung im Jahr 1804. Bis 1900 lebten bereits 1,6 Milliarden Menschen auf der Erde. 1927 waren es zwei Milliarden, 33 Jahre später drei Milliarden. 1974 wurden vier und schon 1987 fünf Milliarden Menschen gezählt. Im Jahr 1999 überschritt die Weltbevölkerung die Sechs-Milliarden-Marke. Damit hatte sich die Weltbevölkerungszahl in einem einzigen Jahrhundert nahezu vervierfacht – ein in der Geschichte der Menschheit einmaliger Vorgang. Zur Zeit wächst die Weltbevölkerung etwa alle 14 Jahre um eine weitere Milliarde Menschen.

2027: 8 Mrd

2013: 7 Mrd.

1999: 6 Mrd.

1927: 2 Mrd.

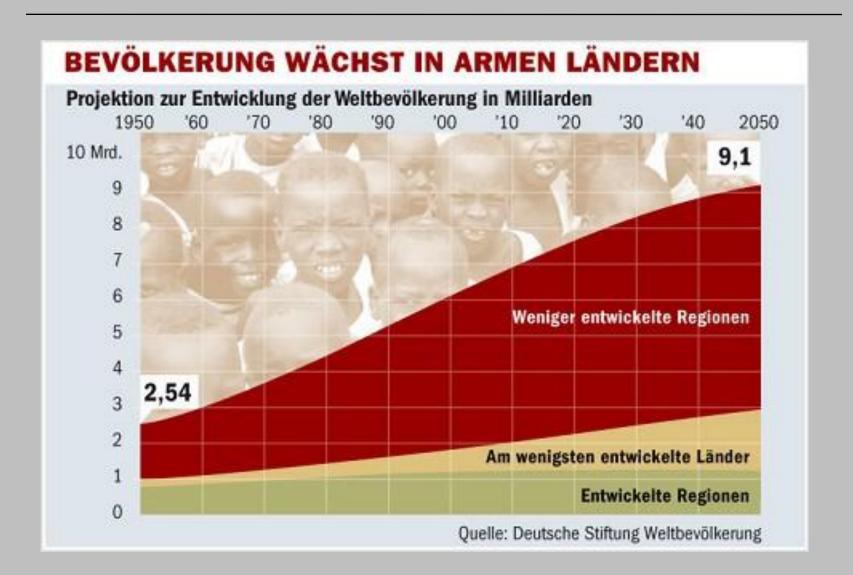
1900

1850

1700

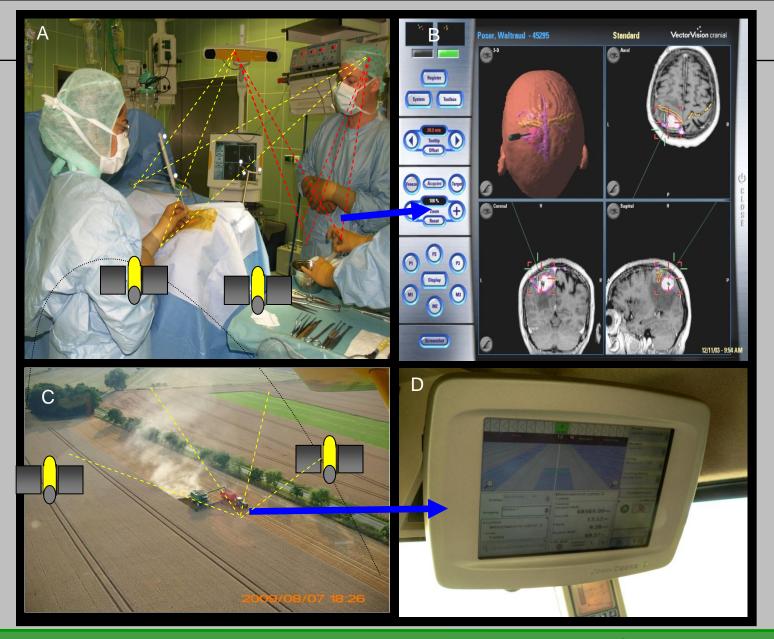
- Weltbevölkerung in Milliarden

1750

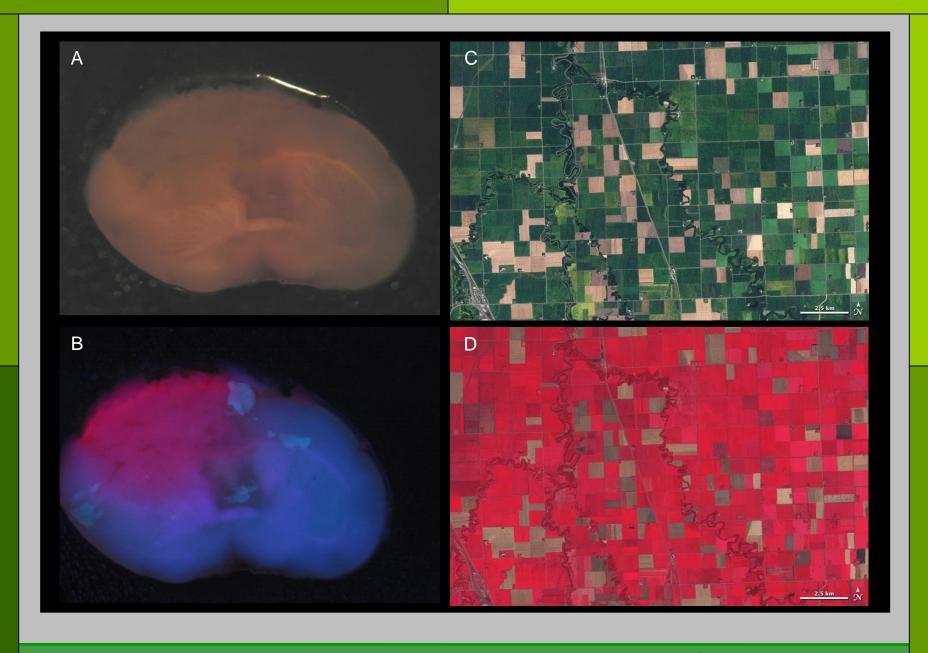

Durchschnittlicher jährlicher Zuwachs innerhalb von 10 Jahren

1804: 1 Mrd.

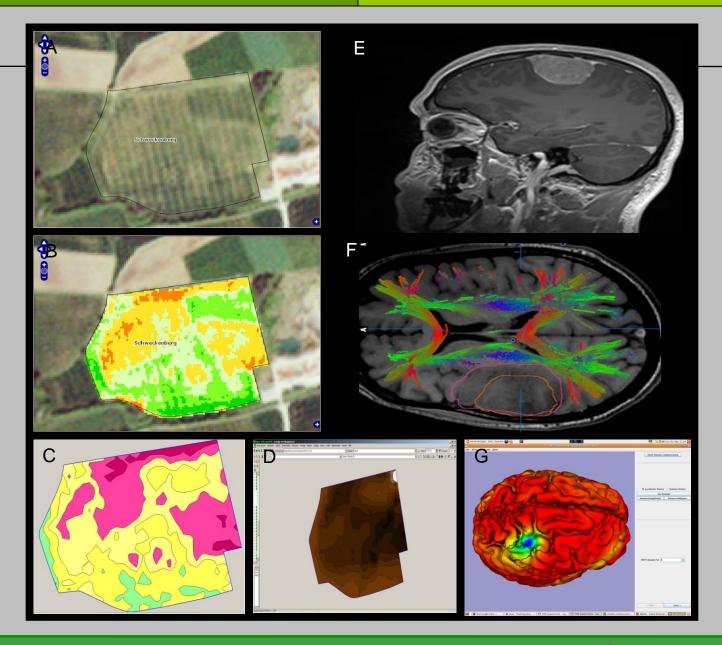
1800


2048: 9 Mrd.

70



Sommaire


- 1. Présentation du conférencier et de l'entreprise
- 2. Raisons du focus de la production sur les denrées alimentaires
- 3. Aperçu de l'agriculture moderne d'aujourd'hui et de demain
- 4. Calcul de rentabilité de l'utilisation du dGPS
- 5. Conclusion

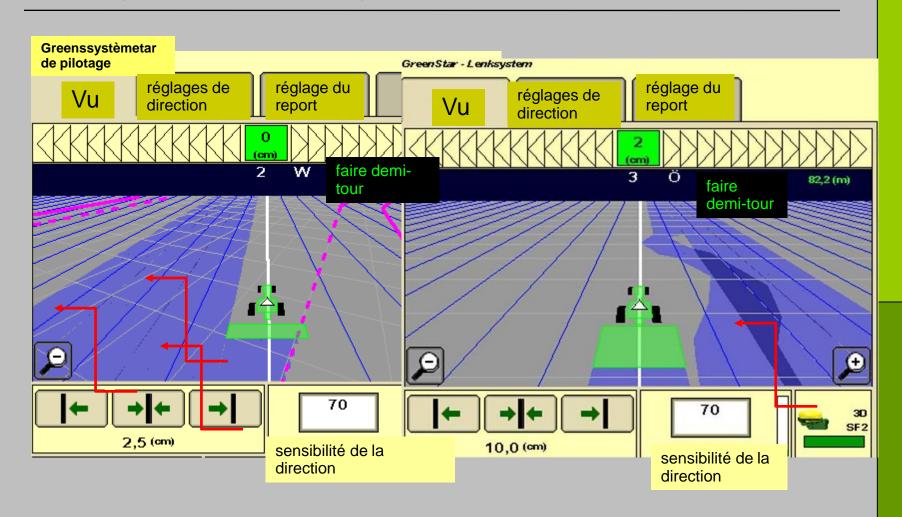
Christoph von Breitenbuch

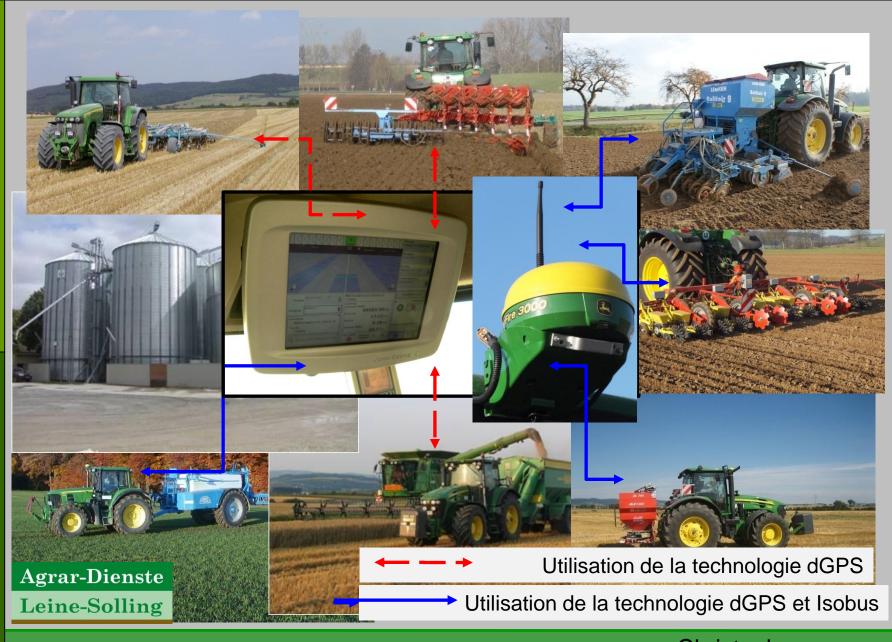
Christoph von Breitenbuch

Christoph von Breitenbuch

Définition

Agriculture de précision (AP)

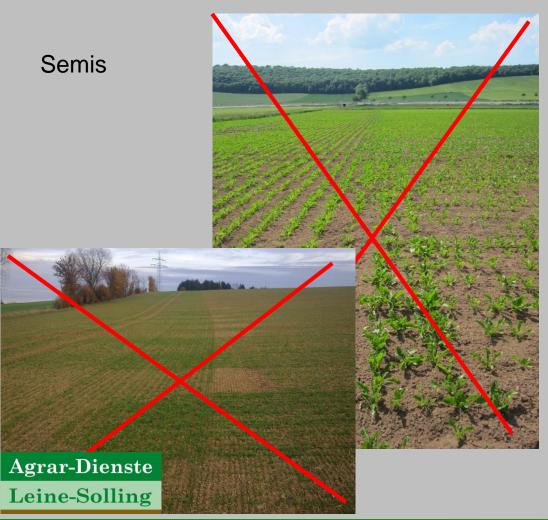

- Technologies de localisation (GNSS) et d'information permettant de décrire, d'analyser, de prédire et de réagir aux variations dans l'espace des conditions de croissances
- AP fournit des informations fiables et guide les applications précises


Smart Farming (SF)

- Le Smart Farming est la suite logique de l'agriculture de précision
- C'est alimenté par les informations mais utilise surtout des informations contextuelles pour exécuter un contrôle à des niveaux de connaissance et d'automatisation plus élevés
- L'objectif est d'obtenir décisions fiables en temps réel
- en utilisant par exemple plus d'une information de capteur ou
- en étant à même de diriger des comportement de machines complexes
- L'objectif consiste à obtenir des machines et des systèmes plus intelligents et par conséquent plus smart (Smart Farming)

© Hans W. Griepentrog, Max-Eyth Endowed Chair (Instrumentation & Test Engineering)

Avantages de la technologie dGPS: minimiser les recouvrements



Nous utilisons les technologies dGPS et Isobus

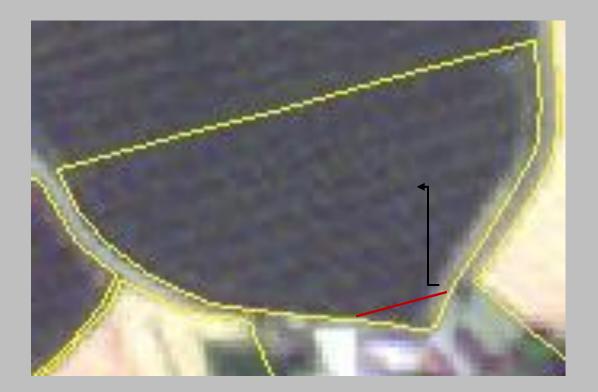
Avantages des technologies dGPS et Isobus

Nous utilisons les technologies dGPS et Isobus

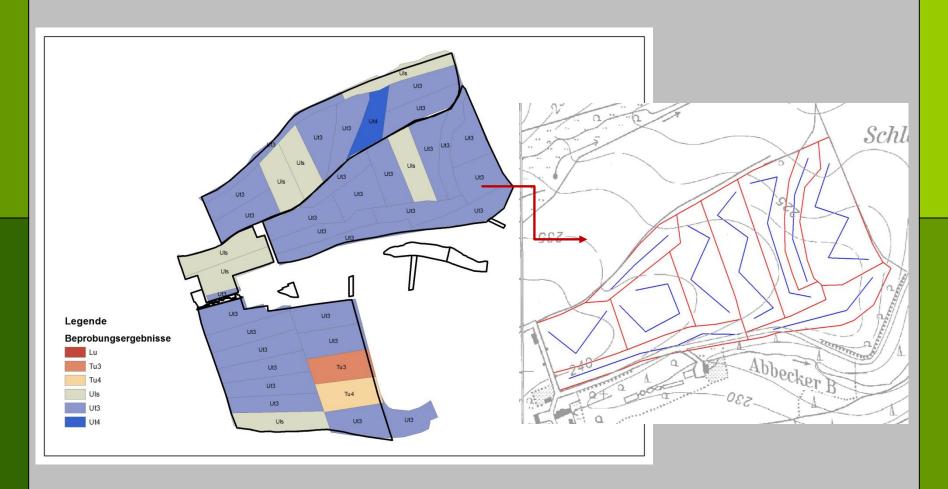
Protection des plantes

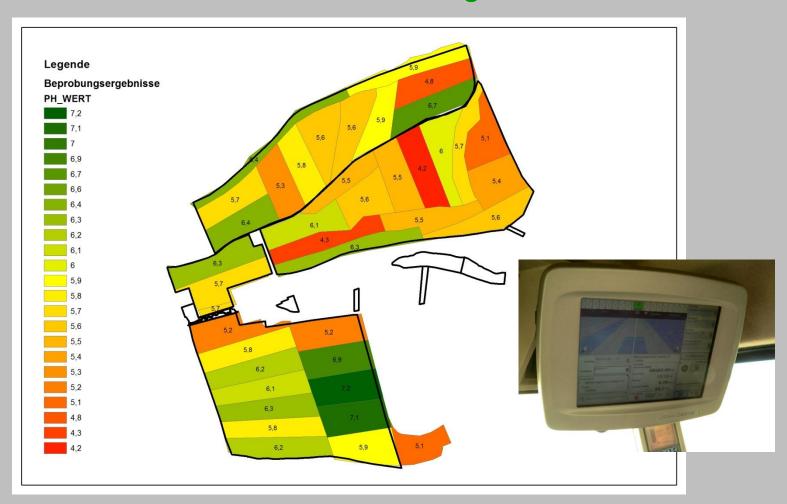
Récolte des moissons

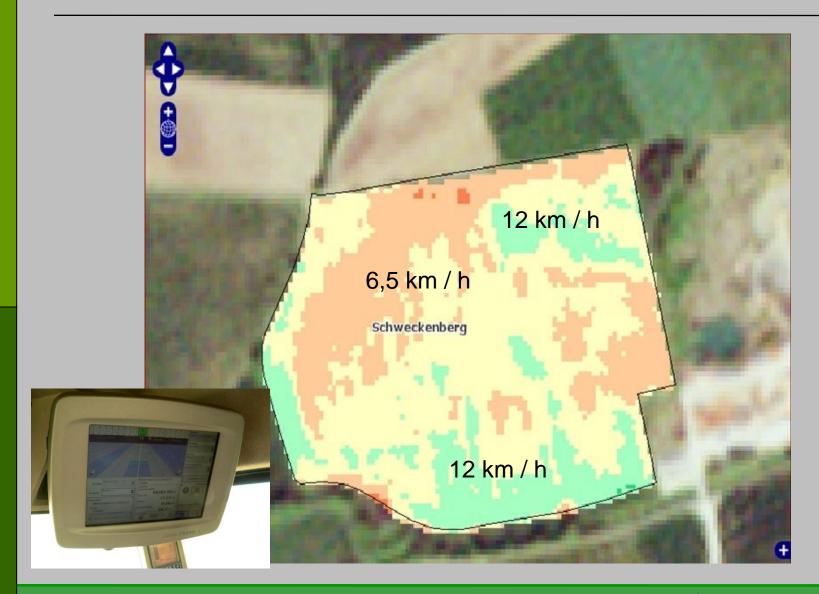
Travail du sol Préparation du lit de semis

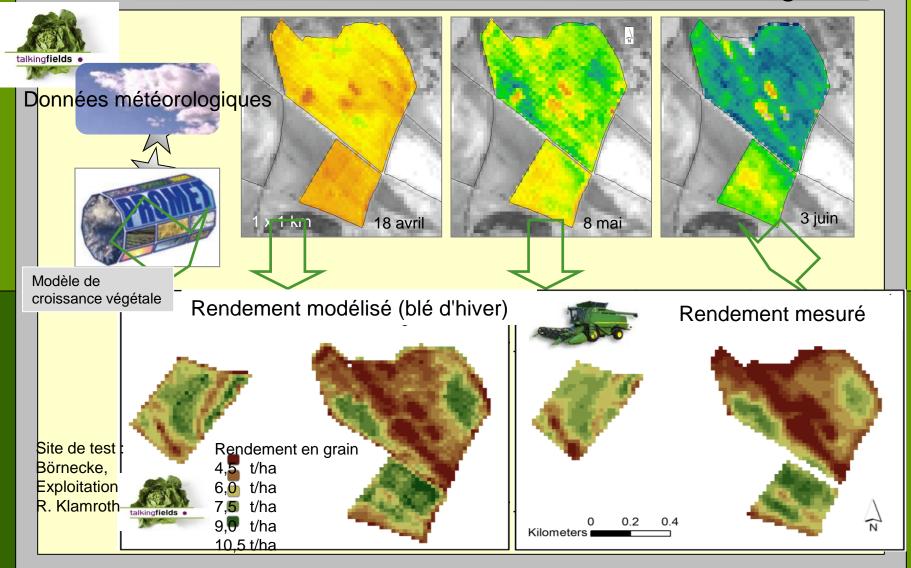


Labourer




Labourer


6. Pulvérisateur d'engrais minéral



Carte des vitesses pour le travail du sol et le semis

Validation de la modélisation de rendement talkingfields

Sommaire

- 1. Présentation du conférencier et de l'entreprise
- 2. Raisons du focus de la production sur les denrées alimentaires
- 3. Aperçu de l'agriculture moderne d'aujourd'hui et de demain
- 4. Calcul de rentabilité de l'utilisation du dGPS
- 5. Conclusion

Présentation du programme et des résultats de calcul pour le calcul de rentabilité de l'utilisation du dGPS dans l'exploitation

Console Greenstar	5 938,10 €
Starfire 3000 Receveur SF2	4 846,97 €
Activation AutoTrac SF2	5 773,88 €
Greenstar Spryer Pro	2 939,30 €
Prix d'achat brut	19 498,15 €
Valeur résiduelle	250,00€
Durée d'utilisation	6 ans

Taux d'intérêts fonds propres	5,00%
Part de fonds propres	100,00 %
Taux d'intérêts fonds étrangers	12,00%
Part de fonds étrangers	0,00%
Calcul du taux d'intérêts	5,00%

Surface utilisée	465 ha
Répartition des parcelles	
Blé d'hiver	44%
Orge	25%
Colza	13%
Betterave sucrière	13%
Avoine	5%
	OK

Potentiel d'économie grâce à moins de chevauchement				
Mode de signal	SF2			
Coupure de tronçons automatique :	oui			
	Pulvérisation phytosanitaire	Semis pneumatique	Epandage d'engrais	
Travail simple	2,50%	1,80%	1,80%	
Travail problématique	2,50%	2,50%	2,50%	
Travail complex	3,00%	3,40%	3,40%	

Complexité	Blé d'hiver	Orge	Colza	Betterave sucrière	Avoine
Travail simple	5%	22%	0%	5%	100%
Travail problématique	10%	16%	0%	35%	0%
Travail complex	86%	63%	100%	60%	0%
	OK	OK	OK	OK	OK

Jungunternehmer - Preis

5,00%

2009

Calcul du taux

d'intérêts

Colza		Betterave sucrière				
Coûts de semences	100,37 €			Orge		
Cours de Semences	100,57 €	Coûts de semences ZR	235,40 €	Coûts de semences	85,33€	
		Coûts de semences ZF	40,66 €			
Quantité d'azote utilisée	220 kg	Coûts de semences	276,06 €			
Prix pour l'azote incl. soufre	1,05€	Quantité d'azote utilisée	160 kg	Quantité d'azote utilisée	190 kg	
Coût de l'azote	231,00€	Prix pour l'azote incl.	0,93€	Prix pour l'azote incl. soufre	1,02€	
		soufre	5,55	Coût de l'azote	193,80€	
Produits phytosanitaires	215,00€	Coût de l'azote	148,80€			
Part de coûts de pulvérisation	215,00€			Quantité de phosphore utilisée	260 kg	
phytosanitaire	1,11	Produits	330,00€	Prix pour le phosphore	1,19€	
Part de coûts de semis	100,37 €	phytosanitaires Part de coûts de	330,00€	Coût du phosphore	309,40 €	
Part de coûts d'épandage d'engrais	231,00€	pulvérisation	000,00	2 11/1 1 11/1		
Coûts totaux / ha	546,37 €	phytosanitaire		Quantité de gips utilisée	1680 kg	
	040,07 C	Part de coûts de semis	276,06€	Prix pour le gips	0,05€	
Blé d'hiver		Part de coûts	148,80 €	Coût du gips	84,00€	
Coûts de semences	90,95€	d'épandage d'engrais				
		Coûts totaux / ha 754,86 €		Quantité de potassium utilisée	260 kg	
Quantité d'azote utilisée	220 kg	_		Prix pour le potassium	0,80€	
quantitie d'azote atmosé	220 119	Avoine		Coût du potassium	208,00€	
Prix pour l'azote incl. soufre	1,02€	Coûts de semences	91,39€			
·	,			Produits phytosanitaires	190,00€	
Coût de l'azote	224,40€			Part de coûts de pulvérisation	190,00€	
		Prix pour l'azote incl. soufi	re 0,93 €	phytosanitaire	05.00.6	
		Coût de l'azote	93,00€	Part de coûts de semis	85,33 €	
Produits phytosanitaires	210,00€	000100102010	33,00 0	Part de coûts d'épandage d'engrais	795,20€	
		Produits phytosanitaires 120,00 €		Coûts totaux / ha	1 070,53 €	
Part de coûts de pulvérisation	210,00€	Part de coûts de 120,00 €				
phytosanitaire	00.05.6	pulvérisation phytosanitaire				
Part de coûts de semis	90,95€	Part de coûts de semis 91,39 €				
Part de coûts d'épandage d'engrais	224,40€					
Tart de couts d'épartidage d'ériglais	224,40 €	Part de coûts d'épandage d'engrais	93,00€			
Coûts totaux / ha	525,35 €			Christophy	on	
	3=3,00 0	Coûts totaux / ha	304,39 €	Christoph v		
2000				Breitenbuch		

Amortissement	3.208,03€
Taux d'intérêt (fond propre)	974,91 €
Taux d'intérêt (fond étranger)	0,00€
Coûts fixes / an	4.682,93€
Systèmes nécessaires	1,6
Coûts fixes / an	16,11€

Excédent / ha						
	Blé d'hiver	Orge	Colza	Betterave sucrière	Avoine	
Travail simple	-5,19€	6,29€	-4,77€	-0,22€	-9,79€	
Travail problématique	-0,96€	10,65€	-2,45€	2,76€	-8,50€	
Travail complex	0,91 €	19,52€	1,60€	8,23€	-6,24€	

Excédent / culture et année					
	Blé d'hiver	Orge	Colza	Betterave sucrière	Avoine
Travail simple	-47,34 €	160,76€	0,00€	-0,65€	-245,02€
Travail problématique	-18,50€	191,90€	0,00€	58,36 €	0,00€
Travail complexe	158,49€	1 951,99 €	96,92€	298,57 €	0,00€

Économie globale	10 098,16 €
- Coûts totaux	7 492,69 €
= Excédent total	2 605,47 €

Cela conduit à un excédent en fonction de la culture et de la complexité du travail de : 5,60 € par hectare.

Les coûts variables d'exécution du travail conduisent à de plus amples économies à hauteur de 6 euros !

Jungunternehmer - Preis	Christoph von
2009	Breitenbuch

Economie (investissement en coûts de capital vs. économie d'intrants, UTH) d'environ 11 € par hectare !

Pour l'ensemble de l'entreprise :

Seuil de rentabilité à env. 300 hectares.

Excédent financier d'env. 6 600 € par an.

Economie moyenne de 2,5% des charges totales en moyens de production.

Avantage des technologies RTK et Isobus

Sommaire

- 1. Présentation du conférencier et de l'entreprise
- 2. Raisons du focus de la production sur les denrées alimentaires
- 3. Aperçu de l'agriculture moderne d'aujourd'hui et de demain
- 4. Calcul de rentabilité de l'utilisation du dGPS
- 5. Conclusion

Conclusion

- 1. La production de denrées alimentaires recourant aux technologies et savoirs les plus modernes est essentielle pour assurer la production de denrées alimentaires
 - Problème de répartition des denrées alimentaires
- 2. L'utilisation d'images satellite, de données de capteur, de données météorologiques jusqu'aux modèles de prévision servent à optimiser l'entreprise
- 3. On observe une baisse de l'impact sur l'environnement grâce à un travail des grandes cultures professionnel et industrialisé
- 4. Le service de l'agricuture rendu aux consommateurs est positif

